

django-book-manager

Current version is 0.3.2.

Github Repository: https://github.com/caltechads/django-book-manager

This reusable Django application provides models suitable for managing a list of
books with ratings, somewhat like a private Goodreads [https://goodreads.com].

Its real purpose is to provide sample models, with sample data, for use in
testing other Django libraries. Often, when authoring new Django libraries, we
need a simple example application to use so that we can test out our code.

Getting it

You can get django-book-manager by using pip:

pip install django-book-manager

If you want to install it from source, grab the git repository from GitHub and run setup.py:

git clone git://github.com/caltechads/django-book-manager.git
cd django-book-manager
python setup.py install

Installing It

To enable django-book-manager in your project you need to add it to INSTALLED_APPS [http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS]
in your project’s settings.py file:

INSTALLED_APPS = (
 ...
 'book_manager',
 ...
)

Then, apply the migrations to add the schema to your database:

./manage.py migrate

Using It

Models

django-book-manager provides these models:

	Book: a book with title, slug, publishing dates, number of pages, authors, etc.

	Author: an author. Book has a many to many relationship with this

	BookAuthor: this is a many to many through table between Book and Author that exists to record billing order of authors on a book (first author, second author, etc.)

	Publisher: a publisher. Book has a foreign key relationship with this

	Binding: a binding (hardcover, softcover, ebook, …). Book has a foreign key relationship with this

	Reading: a reading record of a book by a reader. This is a many to many through table between Book and the AUTH_USER_MODEL [http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-AUTH_USER_MODEL] that records a rating, review, notes, date read, etc. for a particular user.

	Shelf: a collection of Reading objects, used by readers to classify books

Management commands

django-book-manager also supplies a command that can be used to load a
Goodreads [https://goodreads.com] user library export into Django, splitting
it into all the above models as appropriate.

To generate an export from Goodreads, go to your Goodreads account and:

	Click “My Books”

	At the bottom of that page, click “Import and Export”

	At the top of that page, click “Export Library”

To load the CSV thus generated into Django, first create a user for yourself in Django, then:

./manage.py import_csv <csvfile> <username>

A sample Goodreads export is available in this repository as sandbox/data/books.csv.

Features:

…

	Management commands
	import_csv

	Developer Interface
	Models

	Widgets

	Importers

Management commands

import_csv

	synposis

	Imports a Goodreads CSV export into our database and associate the books listed therein with a Django user.

The import_csv command imports a Goodreads CSV export into our database,
creating or updating Book objects (with their dependent
Binding, Publisher and Author objects),
and associates them with user by creating a Reading object
for each one, and adding the Reading to a Shelf as
appropriate.

Why?

Goodreads was the model for this package, and its export file matches our
data structure. It was an easy to get set of rich data.

The export file should have the columns named in the class documentation for
GoodreadsImporter.

Usage

To generate an export from Goodreads, go to your Goodreads account and:

	Click “My Books”

	At the bottom of that page, click “Import and Export”

	At the top of that page, click “Export Library”

To load that export into the database and associate it with a user with username username:

$./manage.py import_csv goodreads.csv username

To load the export and overwite any existing book data in the database with that in the file:

$./manage.py import_csv --overwrite goodreads.csv username

Developer Interface

Models

This part of the documentation covers all the models provided by django-book-manager.

Books

	
class book_manager.models.Book(id, created, modified, title, slug, isbn, isbn13, num_pages, year_published, original_publication_year, binding, publisher)

	Database table: book_manager_book

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	created (CreationDateTimeField) – Created

	modified (ModificationDateTimeField) – Modified

	title (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Book Title. The title of the book

	slug (AutoSlugField) – Slug. Used in the URL for the book. Must be unique.

	isbn (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – ISBN

	isbn13 (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – ISBN

	num_pages (PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]) – Num Pages

	year_published (IntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.IntegerField]) – Year Published

	original_publication_year (IntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.IntegerField]) – Original Publication Year

Relationship fields:

	Parameters

	
	binding (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Binding) – Binding (related name: books)

	publisher (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Publisher) – Publisher (related name: books)

	authors (ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] to Author) – Authors (related name: books)

	readers (ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] to User) – Readers (related name: books)

Reverse relationships:

	Parameters

	
	bookauthor (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from BookAuthor) – All book authors of this book (related name of book)

	readings (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Reading) – All readings of this book (related name of book)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_next_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=True, **kwargs)

	Finds next instance based on created. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_next_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=True, **kwargs)

	Finds next instance based on modified. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_previous_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=False, **kwargs)

	Finds previous instance based on created. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
get_previous_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=False, **kwargs)

	Finds previous instance based on modified. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
authors: ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField]

	Type: ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] to Author

Authors (related name: books)

Accessor to the related objects manager on the forward and reverse sides of
a many-to-many relation.

In the example:

class Pizza(Model):
 toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor
instances.

Most of the implementation is delegated to a dynamically defined manager

	
binding: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey]

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Binding

Binding (related name: books)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
binding_id

	Internal field, use binding instead.

	
bookauthor_set

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from BookAuthor

All book authors of this book (related name of book)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

	
created

	Type: CreationDateTimeField

Created

A wrapper for a deferred-loading field. When the value is read from this

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
isbn: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

ISBN

A wrapper for a deferred-loading field. When the value is read from this

	
isbn13: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

ISBN

A wrapper for a deferred-loading field. When the value is read from this

	
modified

	Type: ModificationDateTimeField

Modified

A wrapper for a deferred-loading field. When the value is read from this

	
num_pages: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]

Num Pages

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
original_publication_year: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: IntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.IntegerField]

Original Publication Year

A wrapper for a deferred-loading field. When the value is read from this

	
property other_authors: QuerySet [http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet]

	Return all authors other than the top-billed author for this book.
These are the authors with order>1 in our BookAuthor
through table.

	Returns

	The queryset of Author objects for the non-primary
author.

	
property primary_author: Author

	Return the top-billed author for this book. This is the author
with order=1 in our BookAuthor through table.

	Returns

	The Author object for the primary author

	
publisher: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey]

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Publisher

Publisher (related name: books)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
publisher_id

	Internal field, use publisher instead.

	
readers: ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField]

	Type: ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] to User

Readers (related name: books)

Accessor to the related objects manager on the forward and reverse sides of
a many-to-many relation.

In the example:

class Pizza(Model):
 toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor
instances.

Most of the implementation is delegated to a dynamically defined manager

	
readings

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Reading

All readings of this book (related name of book)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

	
slug: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: AutoSlugField

Slug. Used in the URL for the book. Must be unique.

A wrapper for a deferred-loading field. When the value is read from this

	
title: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Book Title. The title of the book

A wrapper for a deferred-loading field. When the value is read from this

	
year_published: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: IntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.IntegerField]

Year Published

A wrapper for a deferred-loading field. When the value is read from this

	
class book_manager.models.Author(*args, **kwargs)

	Database table: book_manager_author

An author of a Book. Books can have multiple authors.

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	created (CreationDateTimeField) – Created

	modified (ModificationDateTimeField) – Modified

	first_name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – First name

	last_name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Last name

	middle_name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Middle name

	full_name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Full name

Reverse relationships:

	Parameters

	
	books (Reverse ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] from Book) – All books of this author (related name of authors)

	bookauthor (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from BookAuthor) – All book authors of this author (related name of author)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_next_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=True, **kwargs)

	Finds next instance based on created. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_next_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=True, **kwargs)

	Finds next instance based on modified. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_previous_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=False, **kwargs)

	Finds previous instance based on created. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
get_previous_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=False, **kwargs)

	Finds previous instance based on modified. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
bookauthor_set

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from BookAuthor

All book authors of this author (related name of author)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

	
books

	Type: Reverse ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ManyToManyField] from Book

All books of this author (related name of authors)

Accessor to the related objects manager on the forward and reverse sides of
a many-to-many relation.

In the example:

class Pizza(Model):
 toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor
instances.

Most of the implementation is delegated to a dynamically defined manager

	
created

	Type: CreationDateTimeField

Created

A wrapper for a deferred-loading field. When the value is read from this

	
first_name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

First name

A wrapper for a deferred-loading field. When the value is read from this

	
full_name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Full name

A wrapper for a deferred-loading field. When the value is read from this

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
last_name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Last name

A wrapper for a deferred-loading field. When the value is read from this

	
middle_name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Middle name

A wrapper for a deferred-loading field. When the value is read from this

	
modified

	Type: ModificationDateTimeField

Modified

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
class book_manager.models.BookAuthor(*args, **kwargs)

	Database table: book_manager_bookauthor

This is a through table between Book and Author that
allows us to keep our book authors in the correct order.

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	order (PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]) – Author order

Relationship fields:

	Parameters

	
	book (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Book) – Book (related name: bookauthor)

	author (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Author) – Author (related name: bookauthor)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
author

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Author

Author (related name: bookauthor)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
author_id

	Internal field, use author instead.

	
book

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Book

Book (related name: bookauthor)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
book_id

	Internal field, use book instead.

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
order

	Type: PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]

Author order

A wrapper for a deferred-loading field. When the value is read from this

	
class book_manager.models.Publisher(*args, **kwargs)

	Database table: book_manager_publisher

A publisher of a Book. Books have zero or one publishers.

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	created (CreationDateTimeField) – Created

	modified (ModificationDateTimeField) – Modified

	name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Publisher name. Publisher name

Reverse relationships:

	Parameters

	books (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Book) – All books of this publisher (related name of publisher)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_next_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=True, **kwargs)

	Finds next instance based on created. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_next_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=True, **kwargs)

	Finds next instance based on modified. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_previous_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=False, **kwargs)

	Finds previous instance based on created. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
get_previous_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=False, **kwargs)

	Finds previous instance based on modified. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
books

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Book

All books of this publisher (related name of publisher)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

	
created

	Type: CreationDateTimeField

Created

A wrapper for a deferred-loading field. When the value is read from this

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
modified

	Type: ModificationDateTimeField

Modified

A wrapper for a deferred-loading field. When the value is read from this

	
name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Publisher name. Publisher name

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
class book_manager.models.Binding(*args, **kwargs)

	Database table: book_manager_binding

A binding of a Book (“ebook”, “mass market paperback”,
“hardcover”, etc.). Books have zero or one bindings.

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Binding type. Binding type

Reverse relationships:

	Parameters

	books (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Book) – All books of this binding (related name of binding)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
books

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Book

All books of this binding (related name of binding)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Binding type. Binding type

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

Readings

A Reading is a single person’s use of a Book. It records that
person’s notes, ratings, reading count, etc.

	
class book_manager.models.Reading(*args, **kwargs)

	Database table: book_manager_reading

This model holds user-specific data about a reading of a Book

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	created (CreationDateTimeField) – Created

	modified (ModificationDateTimeField) – Modified

	rating (PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]) – Rating

	private_notes (TextField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.TextField]) – Private Notes. Private notes that only you can see

	review (TextField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.TextField]) – Review. Notes that anyone can see

	read_count (PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]) – Read count. How many times you’ve read this book

	date_added (DateField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.DateField]) – Date added. Date this book was added to your reading list

	date_read (DateField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.DateField]) – Date read. Date you first read this book

Relationship fields:

	Parameters

	
	reader (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to User) – Reader (related name: readings)

	book (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Book) – Book (related name: readings)

	shelf (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Shelf) – Shelf (related name: readings)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_next_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=True, **kwargs)

	Finds next instance based on created. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_next_by_date_added(*, field=<django.db.models.DateField: date_added>, is_next=True, **kwargs)

	Finds next instance based on date_added. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_next_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=True, **kwargs)

	Finds next instance based on modified. See get_next_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_next_by_FOO] for more information.

	
get_previous_by_created(*, field=<django_extensions.db.fields.CreationDateTimeField: created>, is_next=False, **kwargs)

	Finds previous instance based on created. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
get_previous_by_date_added(*, field=<django.db.models.DateField: date_added>, is_next=False, **kwargs)

	Finds previous instance based on date_added. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
get_previous_by_modified(*, field=<django_extensions.db.fields.ModificationDateTimeField: modified>, is_next=False, **kwargs)

	Finds previous instance based on modified. See get_previous_by_FOO [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model.get_previous_by_FOO] for more information.

	
book

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Book

Book (related name: readings)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
book_id

	Internal field, use book instead.

	
created

	Type: CreationDateTimeField

Created

A wrapper for a deferred-loading field. When the value is read from this

	
date_added

	Type: DateField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.DateField]

Date added. Date this book was added to your reading list

A wrapper for a deferred-loading field. When the value is read from this

	
date_read

	Type: DateField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.DateField]

Date read. Date you first read this book

A wrapper for a deferred-loading field. When the value is read from this

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
modified

	Type: ModificationDateTimeField

Modified

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
private_notes

	Type: TextField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.TextField]

Private Notes. Private notes that only you can see

A wrapper for a deferred-loading field. When the value is read from this

	
rating

	Type: PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]

Rating

A wrapper for a deferred-loading field. When the value is read from this

	
read_count

	Type: PositiveIntegerField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveIntegerField]

Read count. How many times you’ve read this book

A wrapper for a deferred-loading field. When the value is read from this

	
reader

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to User

Reader (related name: readings)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
reader_id

	Internal field, use reader instead.

	
review

	Type: TextField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.TextField]

Review. Notes that anyone can see

A wrapper for a deferred-loading field. When the value is read from this

	
shelf

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to Shelf

Shelf (related name: readings)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
shelf_id

	Internal field, use shelf instead.

	
class book_manager.models.Shelf(*args, **kwargs)

	Database table: book_manager_shelf

This model is used to organize Reading instances for a user into
buckets (“read”, “to-read”, “abandoned”). Shelves are per-user.

	Parameters

	
	id (AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]) – Primary key: ID

	name (CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]) – Shelf name. Name of a shelf on which books can live

Relationship fields:

	Parameters

	reader (ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to User) – Reader (related name: shelves)

Reverse relationships:

	Parameters

	readings (Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Reading) – All readings of this shelf (related name of shelf)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
id

	Type: AutoField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.AutoField]

Primary key: ID

A wrapper for a deferred-loading field. When the value is read from this

	
name: Field [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field]

	Type: CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.CharField]

Shelf name. Name of a shelf on which books can live

A wrapper for a deferred-loading field. When the value is read from this

	
objects = <django.db.models.Manager object>

	

	
reader

	Type: ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to User

Reader (related name: shelves)

Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

	
reader_id

	Internal field, use reader instead.

	
readings

	Type: Reverse ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] from Reading

All readings of this shelf (related name of shelf)

Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager

Widgets

This part of the documentation covers all the reusable django-wildewidgets [https://github.com/caltechads/django-wildewidgets] widgets provided by
django-book-manager.

Importers

	
class book_manager.importers.GoodreadsImporter

	Usage: GoodreadsImporter().run(csv_filename, user)

Import data into our database from a Goodreeads CSV Export.

	Import any new book_manager.models.Binding, book_manager.models.Publisher,
and book_manager.models.Author instances

	Import the book from each row as a book_manager.models.Book

	Import the user specific data from each row as a book_manager.models.Reading
associated with the user user

A Goodreads CSV export has these columns:

	Column name

	Type

	Notes

	Book Id

	int, unique

	goodreads internal id

	Title

	str

	

	Author

	str

	First Last

	Author l-f

	str

	Last, First

	Additional Authors

	str

	First Last1, First Last2…

	ISBN

	str

	value is “=” if empty

	ISBN13

	str

	value is “=” if empty

	My Rating

	int

	0, 1, 2, 3, 4, 5

	Average Rating

	float

	2 decimals

	Publisher

	str

	can be empty

	Binding

	str

	can be empty

	Number of Pages

	int

	can be empty

	Year Published

	int

	can be empty

	Original Publication Year

	int

	can be empty

	Date read

	date

	YYYY/MM/DD

	Date added

	date

	YYYY/MM/DD

	Bookshelves

	str

	comma separated

	Bookshelves with positions

	str

	NAME (#NUM), comma sep

	Exclusive Shelf

	str

	NAME

	My Review

	text

	can be empty

	Spoiler

	text

	can be empty

	Private Notes

	text

	can be empty

	Read count

	int

	

	Owned copies

	int

	

	
__init__() → None [https://docs.python.org/3/library/constants.html#None]

	

	
import_book(row: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Book

	Get or create a Book based on row, a row from our
csv.DictReader [https://docs.python.org/3/library/csv.html#csv.DictReader] reader of our Goodreads export.

	Parameters

	row – a row from our Goodreads export

	Keyword Arguments

	overwrite – if True, overwrite any existing book data for this book

	Returns

	A Book instance

	
import_reading(book: Book, user: User, row: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → None [https://docs.python.org/3/library/constants.html#None]

	Import the data for the Reading record for user.

	Parameters

	
	book – the book for which we’re importing reading data

	user – the user whose reading data we’re importing

	row – the row from the Goodreads CSV, as output by csv.DictReader [https://docs.python.org/3/library/csv.html#csv.DictReader]

	
load_lookups(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Find the unique bindings, publishers and authors in the Goodreads export
CSV filename and create them in the database as necessary.

	Parameters

	filename – the filename of the CSV file to read

	
run(filename: str [https://docs.python.org/3/library/stdtypes.html#str], user: User, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Load the books in the CSV identified by filename into the database,
splitting each row into appropriate
book_manager.models.Book,
book_manager.models.Author,
book_manager.models.Publisher and
book_manager.models.Binding records, creating the foreign
keys and many-to-many targets as needed.

bookmanager.models.Reading data will always be overwritten, and
bookmanager.models.Book data will be preserved, unless override is
True.

	Parameters

	filename – the filename of the Goodreads CSV export file

	Keyword Arguments

	overwrite – if True, overwrite any existing Book with data from the CSV

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 book_manager	

 	
 	
 book_manager.importers	

 	
 	
 book_manager.models	

 	
 	
 book_manager.wildewidgets	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | Y

_

 	
 	__init__() (book_manager.importers.GoodreadsImporter method)

A

 	
 	author (book_manager.models.BookAuthor attribute)

 	Author (class in book_manager.models)

 	Author.DoesNotExist

 	
 	Author.MultipleObjectsReturned

 	author_id (book_manager.models.BookAuthor attribute)

 	authors (book_manager.models.Book attribute)

B

 	
 	binding (book_manager.models.Book attribute)

 	Binding (class in book_manager.models)

 	Binding.DoesNotExist

 	Binding.MultipleObjectsReturned

 	binding_id (book_manager.models.Book attribute)

 	book (book_manager.models.BookAuthor attribute)

 	(book_manager.models.Reading attribute)

 	Book (class in book_manager.models)

 	Book.DoesNotExist

 	Book.MultipleObjectsReturned

 	book_id (book_manager.models.BookAuthor attribute)

 	(book_manager.models.Reading attribute)

 	
 book_manager.importers

 	module

 	
 	
 book_manager.models

 	module

 	
 book_manager.wildewidgets

 	module

 	BookAuthor (class in book_manager.models)

 	BookAuthor.DoesNotExist

 	BookAuthor.MultipleObjectsReturned

 	bookauthor_set (book_manager.models.Author attribute)

 	(book_manager.models.Book attribute)

 	books (book_manager.models.Author attribute)

 	(book_manager.models.Binding attribute)

 	(book_manager.models.Publisher attribute)

C

 	
 	created (book_manager.models.Author attribute)

 	(book_manager.models.Book attribute)

 	(book_manager.models.Publisher attribute)

 	(book_manager.models.Reading attribute)

D

 	
 	date_added (book_manager.models.Reading attribute)

 	
 	date_read (book_manager.models.Reading attribute)

F

 	
 	first_name (book_manager.models.Author attribute)

 	
 	full_name (book_manager.models.Author attribute)

G

 	
 	get_next_by_created() (book_manager.models.Author method)

 	(book_manager.models.Book method)

 	(book_manager.models.Publisher method)

 	(book_manager.models.Reading method)

 	get_next_by_date_added() (book_manager.models.Reading method)

 	get_next_by_modified() (book_manager.models.Author method)

 	(book_manager.models.Book method)

 	(book_manager.models.Publisher method)

 	(book_manager.models.Reading method)

 	
 	get_previous_by_created() (book_manager.models.Author method)

 	(book_manager.models.Book method)

 	(book_manager.models.Publisher method)

 	(book_manager.models.Reading method)

 	get_previous_by_date_added() (book_manager.models.Reading method)

 	get_previous_by_modified() (book_manager.models.Author method)

 	(book_manager.models.Book method)

 	(book_manager.models.Publisher method)

 	(book_manager.models.Reading method)

 	GoodreadsImporter (class in book_manager.importers)

I

 	
 	id (book_manager.models.Author attribute)

 	(book_manager.models.Binding attribute)

 	(book_manager.models.Book attribute)

 	(book_manager.models.BookAuthor attribute)

 	(book_manager.models.Publisher attribute)

 	(book_manager.models.Reading attribute)

 	(book_manager.models.Shelf attribute)

 	
 	import_book() (book_manager.importers.GoodreadsImporter method)

 	import_reading() (book_manager.importers.GoodreadsImporter method)

 	isbn (book_manager.models.Book attribute)

 	isbn13 (book_manager.models.Book attribute)

L

 	
 	last_name (book_manager.models.Author attribute)

 	
 	load_lookups() (book_manager.importers.GoodreadsImporter method)

M

 	
 	middle_name (book_manager.models.Author attribute)

 	modified (book_manager.models.Author attribute)

 	(book_manager.models.Book attribute)

 	(book_manager.models.Publisher attribute)

 	(book_manager.models.Reading attribute)

 	
 	
 module

 	book_manager.importers

 	book_manager.models

 	book_manager.wildewidgets

N

 	
 	name (book_manager.models.Binding attribute)

 	(book_manager.models.Publisher attribute)

 	(book_manager.models.Shelf attribute)

 	
 	num_pages (book_manager.models.Book attribute)

O

 	
 	objects (book_manager.models.Author attribute)

 	(book_manager.models.Binding attribute)

 	(book_manager.models.Book attribute)

 	(book_manager.models.BookAuthor attribute)

 	(book_manager.models.Publisher attribute)

 	(book_manager.models.Reading attribute)

 	(book_manager.models.Shelf attribute)

 	
 	order (book_manager.models.BookAuthor attribute)

 	original_publication_year (book_manager.models.Book attribute)

 	other_authors (book_manager.models.Book property)

P

 	
 	primary_author (book_manager.models.Book property)

 	private_notes (book_manager.models.Reading attribute)

 	publisher (book_manager.models.Book attribute)

 	
 	Publisher (class in book_manager.models)

 	Publisher.DoesNotExist

 	Publisher.MultipleObjectsReturned

 	publisher_id (book_manager.models.Book attribute)

R

 	
 	rating (book_manager.models.Reading attribute)

 	read_count (book_manager.models.Reading attribute)

 	reader (book_manager.models.Reading attribute)

 	(book_manager.models.Shelf attribute)

 	reader_id (book_manager.models.Reading attribute)

 	(book_manager.models.Shelf attribute)

 	readers (book_manager.models.Book attribute)

 	
 	Reading (class in book_manager.models)

 	Reading.DoesNotExist

 	Reading.MultipleObjectsReturned

 	readings (book_manager.models.Book attribute)

 	(book_manager.models.Shelf attribute)

 	review (book_manager.models.Reading attribute)

 	run() (book_manager.importers.GoodreadsImporter method)

S

 	
 	shelf (book_manager.models.Reading attribute)

 	Shelf (class in book_manager.models)

 	Shelf.DoesNotExist

 	
 	Shelf.MultipleObjectsReturned

 	shelf_id (book_manager.models.Reading attribute)

 	slug (book_manager.models.Book attribute)

T

 	
 	title (book_manager.models.Book attribute)

Y

 	
 	year_published (book_manager.models.Book attribute)

 nav.xhtml

 Table of Contents

 		
 django-book-manager

 		
 Management commands

 		
 import_csv

 		
 Why?

 		
 Usage

 		
 Developer Interface

 		
 Models

 		
 Books

 		
 Readings

 		
 Widgets

 		
 Importers

 		
 GoodreadsImporter

_static/plus.png

_static/file.png

_static/minus.png

